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Abstract — This study compares the result of the PID 

controller to the LQR controller when used in the on-orbit 
stabilization of a satellite in the low earth orbit. The results from 
the PID controller show that the controller is too weak when 
used alone as the controller could not stabilize the system after 
500 s which is not even allowable in practical application. For 
the LQR controller, a performance metric was set which is: i. 
the settling time is to be ≤ 10 seconds, ii. Maximum power 
consumption ≤ 1.5 Watts and iii. Zero (0) steady-state error / 
final value. The LQR controller meets system performance by 
achieving a settling time of roll (peak amplitude=0.26 s, settling 
time=10.0 s), Pitch (peak amplitude=0.395 s, settling 
time=5.52 s), Yaw (peak amplitude=0.350 s, settling time=5.52 s) 
and Total power consumption are 1.26 watt with a maximum 
torque of 3.22 mNm. Because power consumption and precision 
are critical in satellite applications, particularly military 
surveillance satellites. As a result, for an aerospace engineer to 
achieve their space mission, for instance, space mission like low 
earth orbit surveillance satellites, flexible solar panels, a high 
accuracy pointing accuracy, it will be impossible to adopt a PID 
controller except the engineer is ready for the complexity of 
design filters and compensators. An LQR design in this study 
can take care of all this complexity with minimum power 
consumption. 
 

Keywords — Controllability, GUI, Observability, LQR, 
Matlab, MIMO, On-Orbit, PID, Reaction Wheel, Satellite 
Stabilization, Satellite Technology, Stability, Simulink. 
 

I. INTRODUCTION 
In satellite engineering and technology, accuracy and 

reliability are likely to take precedence over numerous other 
metrics. Aerospace engineers, especially avionics engineers 
are typically reluctant to take risks and they prefer approaches 
that have previously been implemented in actual space 
environments or space control conditions. Owing to the 
enormous cost (money, time and expertise) of putting a 
satellite in space, they can't afford to use trial-and-error 
methods. Notwithstanding the rapid advancement of modern 
control theories, classical PID control remains unrivalled in 
aerospace engineering and satellite attitude control and 
stabilization [1]. Since the first space flight in 1957 [2], well 
over 4000 active spacecraft have landed and are presently in 
space, with PID serving as the base or foundational controller 
on more than 98% of them [1]. Undoubtedly, existing 
spacecraft or satellites have evidenced that PID control can 
satisfy the majority of the vital mission objectives. Numerous 
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strategies, like gain scheduling, and structure-bending filters 
have been developed to account for the PID controller as 
baseline controller's insufficiency of adaptability and 
robustness, which invariably increase weight and power 
consumption, resulting in satellite control systems becoming 
more complex that they lack portability and flexibility [1]. 
However, as the demands of space flight increase, satellites 
do not only need to require different characteristics, like high-
frequency oscillations, highly flexible design, low power 
consumption or unknown dynamics but they are required to 
have incredibly high-performance standards [3]. This pattern 
puts the PID controller as a baseline control into the test and 
forces aerospace engineers to employ advanced control 
mechanisms.  

There are various practical instances in which it is 
important to keep a satellite in a corrected orientation with 
regards to the Earth, like scanning of cloud cover (weather 
conditions) for weather prediction, communications, military 
and scientific observations, the survey of Earth resources, and 
many others [4]. Regrettably, even if a spacecraft is 
accurately inclined at liftoff or launch, it deviates from this 
preferred orientation because the problem associated with 
environmental influences (like solar radiation pressure, 
Earth's magnetic and gravitational fields interaction, as well 
as, if the satellites are near the Earth (low earth orbit), it will 
be affected free molecular reaction forces), internal problem 
(component failure), and the coupling of attitudinal dynamics 
(incorrect attitude) with orbital and flexural mechanical 
systems [5], [6]. This complex problem is liberational motion, 
which must be managed in order to complete a given mission 
successfully. Therefore, a well-defined space mission and 
robust satellite attitude control method will be required to 
solve these problems. The satellite mission requirement 
determines the satellite attitude control method to adopt, 
among these control methods are; Magnetic Torquer method 
[7], [8]: though not expensive, light-weighted but has a 
problem with accuracy because of the variability of the 
Earth's Magnetic Field (EMF), Control Moment Gyro (CMG) 
[9], [10]: the problem encountered with CMG is the 
singularity problem, a condition in which the CMG is unable 
to generate torque in a specific direction, and also higher 
weight, power consumption of the device, and high cost, 
THRUSTERS [11], [12]: are also rarely used due to fuel mass 
and volume penalty and its irreversible depletion. 

Because of the problems associated with the methods 
identified above, the reaction wheel method is considered in 
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the study as the actuator and a tune-PID controller and Linear 
Quadratic Regulator will be designed to control the actuator 
which is expected to produce a high level of accuracy and 
eliminate the problems. This study, therefore, compares the 
tune-PID controller and LQR in the on-orbit stabilization of 
small satellites in space. 

 

II. RESEARCH BACKGROUND 
An earth observation satellite in the low earth orbit will 

maintain its natural stability and balance via two factors: its 
velocity and the gravitational influence of the earth [13]. To 
counteract the bigger and more powerful gravitational pull, 
the satellite orbiting nearer to Earth demands more velocity. 
Therefore, eight, accuracy, and stability to capture events 
become big issues for satellite orbit near the earth, especially 
for surveillance and military applications. 

Numerous attitude control approaches have been 
developed over the years, with several being adopted for 
practical space applications. They are widely categorized as 
active, passive, or semi-passive satellite control methods. The 
active satellite control systems make utilize the satellite's 
available energy [14], [15] whilst the passive [16] and semi-
passive systems [17], in contrast, utilize environmental forces 
to stabilize and control themselves. Satellites in the early 
years of space travel were generally small, simple mechanical 
designs, and mainly rigid. This is no longer correct for 
modern technologically advanced satellites or spacecraft, 
which may be equipped with large flexible solar panels to 
match the ever-increasing requirement for electrical power to 
power onboard electronic instruments, communications 
systems and scientific experiments. Even some of the recent 
Micro and nanosatellites come with a lot of complexity that 
requires active control and advanced control methods for 
orbital stability, for precision and accuracy. Table I shows the 
list of some passive control [14], [18], their applications and 
limitation. While Table II shows a list of active control with 
their applications and limitations [19], [20]. 

 
TABLE I: LIST OF PASSIVE CONTROLLERS, THEIR 

APPLICATIONS AND LIMITATIONS 
Sensors Applications Limitations 

Gyroscope Angular velocity Long-term drift 

Sun sensor Pointing direction 
Sun needs to be visible. 

Two-axis for digital/one-
angle for analog. 

Earth horizon sensor Pointing direction Two-axis 

Magnetometer Pointing direction Low precision 
Two-axis 

Star sensor Three-axis high 
precision High-dynamic conditions 

 
TABLE II: ACTUATOR LIMITATION AND APPLICATION TO 

THE SATELLITE ATTITUDE CONTROL 
Actuators Applications Limitations 

Thrusters Space travel 
Debris removal 

Low reliability of 
mechanisms 

2. Large moment of inertia 

Solar sail Gravity gradient 
stabilization Limited control capability 

Gravity gradient 
actuator 

3-axis 
stabilization LEO 

MMC 3-axis 
stabilization 

Displacement constraints 
External forces needed 

Reaction wheels Variety Saturation 
 

From extant literature, the problem associated with 
small and microsatellite attitude control and on-orbit 
stabilization are: 

A. Low Redundancy 
Actuators and sensors on spacecraft are likely to fail, which 

could result in massive failures [21]. The low redundancy 
characteristic of microsats, due to mass and volume 
limitations, is the main problem in their application [22].  

B. Alignment Error 
The alignment error for satellite sensors and actuators is 

always calibrated and compensated prior to launch. The 
hostile environment during the space launch, on the other 
hand, may change the assembly matrix and lead to errors in 
attitude control. Furthermore, due to light exchange and 
eclipse, satellites will experience high/low-temperature 
alternation during operation, and the matrix will change under 
different thermal conditions. Traditionally, this problem is 
solved by implementing active thermal control for the entire 
satellite and some of its components. 

C. High Flexibility 
In recent years, increasing mission requirements have 

increased the complexity of spacecraft, as evidenced by the 
number of movable parts required, such as large solar panels 
and deployable antennas, and manipulators. 

Considering the problem mentioned above PID controller 
will continue to increase in high complexity to solve this 
problem. Therefore, an advanced control method is required. 

Several peered reviewed literatures have published several 
works on advanced control using a controller like LQG, 
fuzzy, and AI but they mostly end up as just literature because 
some of these methods have still not been tested on real 
satellites. few authors have worked on the on-orbit satellite 
stabilization of small satellites using LQR, but they mostly 
neglected the effect of the control method on the energy 
consumption of the controllers. 

 

III. RESEARCH METHOD 

A. Satellite Attitude Control Kinematics and Dynamic 
Models 
Fig. 1 below shows the satellite simulation model 

architecture which comprises the satellite dynamic and 
kinematic equations model, models of sensors and actuators, 
and algorithms of the navigation and control system. This 
model operates in the time domain. 

 
Fig. 1. satellite simulation model architecture [13]. 
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Mathematical models of physical systems are key elements 
in the design and analysis of control systems. To understand 
and control the complex satellite system, a quantitative 
mathematical model of the system must be derived from the 
basic relationship between system variables. 

B. Kinematic Equations for Satellite 
The kinematics describes the satellite’s orientation in space 

and is derived by the integration of the angular velocity. The 
angular velocity of the satellite model can be described by 
unit quaternions [14]. 

 
q̇ = $η̇ε̇' =

!
" (

−𝜀#
𝜂𝐼$×$ + 𝑆(𝜀)

1    (1) 

C.  Dynamic Model of a Satellite 
Dynamic equations describe how velocity changes for a 

given force. According to the Newton-Euler formulation 
presented in [14], [15], angular momentum, H changes 
according to the applied torque. The total angular momentum 
of the spacecraft is [16].  

 
!"!
!#

= 𝐼$%[−𝜔&(𝑡) × (𝐼𝜔& + ℎ') + 𝑇!(𝑡) − 𝑇(] (2) 

D.  Reaction Wheel Torque  
For a 3-axis RW configuration, x, y, and z, the torques are 

generally modelled by (3), according to [14]. 
 

 
Fig. 2. The model of a satellite in space [13]. 

 

𝜏)& = (!*"
!#
)& +𝜔&+& × 𝐿) − 𝜏,)+(#+-.&    (3) 

 
where, 
𝜏)& is the torque caused by the reaction wheel, 
𝐿) = [𝐿)/	𝐿)0	𝐿)1]2 = 𝐼)𝜔)		is the total moment vector of the 
reaction wheel, 
𝜏,)+(#+-.&  is the frictional torque caused by wheels and is 
usually assumed to be zero. 

Then (3) yields (4). 
 

𝜏&' = (()!
(*
)' +𝜔'+' × 𝐿& = 6

𝜏&,
𝜏&-
𝜏&.
7 = 8

𝐿&, + 𝐿&.𝜔- − 𝐿&-𝜔.
𝐿&- + 𝐿&,𝜔. − 𝐿&.𝜔,
𝐿&. + 𝐿&-𝜔, − 𝐿&,𝜔-

9

      (4) 
 

𝜔&+& = [𝜔/	𝜔0	𝜔1]2    (5) 
 
[𝑇/	𝑇0	𝑇1]2 = 𝐿4×4[𝑇%	𝑇6	𝑇4]2   (6) 

 
The rotation matrix R, from frame a to b is denoted 𝑅7&. The 

rotation of a vector from one frame is written with the 
following notation in [14], [17]. 

 
𝑥#- = 𝑅,)-8#- 𝑥,)-8    (7) 
 
𝑅9,; corresponding to a rotation 𝜗 about the 𝜃-axis as 

defined in [14], [17]. 
 
𝑅9,; = 𝑙 + 𝑆(𝜗)𝑠𝑖𝑛𝜃 + (1 − 𝑐𝑜𝑠𝜃)𝑆6(𝜗)  (8) 
 
where S is the skew-symmetric operator. 

The linearization points for angular velocities (𝜔+&& ), are 
selected is	linearized	as	in [18]–[20]. 
 
𝜔+&& = [∅̇	θ̇	φ̇]<	 +ω=[−φ	 − 1	∅]<   (9) 
 
𝜔+&& , which is the angular velocities of satellites in the body 
axis, (𝜔+&& = 2𝜀̇)	is linearized as in [18]–[20].  
 

𝜔+&& = M
𝜔/
𝜔0
𝜔1
N = M

2𝜀%̇ − 2𝜔=𝜀4
2𝜀6 −𝜔=

2𝜀4̇ + 2𝜔=𝜀%
N = O

∅̇ − 𝜑𝜔=
𝜃̇ − 𝜔=
𝜑̇ + ∅̇𝜔=

Q  (10) 

 
Hence its time derivation is given as (11). 

 

𝜔+&& = O
𝜔̇/
𝜔̇0
𝜔̇1
Q = M

2𝜀̇ − 2𝜔=𝜀4
2𝜀6̈

2𝜀4̈ + 2𝜔=𝜀%̇
N = O

∅̈ − 𝜑̇𝜔=
𝜃̈

𝜑̈ + ∅̇𝜔=
Q  (11) 

 
The following relations hold between the quaternions, (𝜀1, 

𝜀2, 𝜀3) and the Euler angles, (𝜙) as (12). 
 
[∅	𝜃	𝜑]2 = [2𝜀%		2𝜀6	2𝜀4	]    (12) 
 

The Euler angles 𝜙, 𝜃, and 𝜓 are defined as the rotational 
angles about the satellite body axes Roll 𝜙, about the 𝒙−axis; 
Pitch 𝜃, about the 𝒚− axis; and Yaw 𝜓, about the 𝒛− axis. The 
term 𝜔= represents the initial orbital angular velocity of the 
satellite.  

The linearized mathematical models of (10)-(12) are 
obtained as in	[18]–[20] is in (13). 

 

𝐼 !"!#
!

!#
= [−𝜔&+& (𝑡) × X𝐼𝜔&+& Y + 𝜏>& + Z

!?
!#
)&[  (13) 

 
Applying the skew-symmetric to (22) and arranging in 

component form yields (14)-(16). 
 

𝐼/∅̈ = ∅\4𝜔=6X𝐼1 − 𝐼0Y − 𝜔=𝜃̇X𝐼1 − 𝐼0Y^ + 
𝜃̇𝜑̇X𝐼1 − 𝐼0Y + 𝜑̇𝜔=X𝐼1 − 𝐼0 + 𝐼1Y + X𝐿̇)/Y  (14) 
 
𝐼0𝜃̈ = 3𝜔=6(𝐼/ − 𝐼1)𝜃 + ∅\𝜑𝜔=6(𝐼/ − 𝐼1) + ∅̇𝜔=(𝐼1 − 𝐼/)^ 
+𝜑̇𝜑𝜔=(𝐼/ − 𝐼1) + X𝐿̇)0Y    (15) 
 
𝐼1𝜑̈ = 𝜑\𝜔=6(𝐼/ − 𝐼1) + 𝜃̇𝜔=(𝐼1 − 𝐼/)^ + 
∅̇\𝜔=X𝐼0 − 𝐼/ + 𝐼1Y^ + 𝜃̇X𝐼/ − 𝐼0Y] + X𝐿̇)1Y  (16) 
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The state-space equation for this system represented in the 
linear form of (17) and (18) can be derived by defining the 
following state below: 

 
𝑥 = \∅	̇ 𝜃	̇ 𝜑̇	∅̈	𝜃̈	𝜑̈^    (17) 
 
𝑢 = [𝐿̇)/	𝐿̇)0	𝐿̇)1]2    (18) 
 
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡)    (19) 
 
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)    (20) 
 
Therefore: (14)-(16) will result to (21) and (22). 
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⎥
⎥
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     (21) 

 
OUTPUT EQUATION, 
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where, 

A=

⎣
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B=

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0
0 0 0
0
!
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0
0

0
0
!
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0
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⎥
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			C=

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0
0 0 0 0 0 0
0
0
0
0

0
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0
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0 0 0 0
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⎥
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			 D= 0 

 
Considering on-orbit satellite information as in Table III. 

 
TABLE III: A TYPICAL LEO ORBIT SATELLITE INFORMATION 
Satellite Parameters Values Units 

Satellite weight 120 𝐾𝑔 

Satellite Inertia Matrix 
 

𝐼𝑥 = 9.8194, 𝐼𝑦 
=9.7030, 𝐼𝑧 

=9.7309 
𝐾𝑔𝑚- 

Orbit 686 (LEO orbit) 𝐾𝑚 
Orbit angular velocity, 

𝜔0 
0.0010764 𝑟𝑎𝑑/𝑠 

Initial Roll angle, [𝜙0] 3 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 
Initial Pitch angle, [𝜃0] 1 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 
Initial Yaw angle, [𝜓0] 1 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 
Initial angular velocities 

[𝜙, 𝜃, 𝜓] 
[0 0 0] 𝑟𝑎𝑑/𝑠 

Source [21]. 
 

Inputting the information in Table III in (21) to (22), the 
plant matrix G becomes; 
 

A=

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 1.0000 0 0
0 0 0 0 1.0000 0
0

0.0000
0
0

0
0

0.0000
0

0 0 0 1.0000
0 0 0 0.0032
0 0 0 0

0.0000 −0.0033 0 0⎦
⎥
⎥
⎥
⎥
⎤

 

 

B=

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0
0 0 0
0

0.0339
0
0

0
0

0.0344
0

0
0
0

0.0343⎦
⎥
⎥
⎥
⎥
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0
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0
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⎥
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	D=

⎣
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⎢
⎢
⎢
⎡
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0 0 0
0
0
0
0

0
0
0
0

0
0
0
0⎦
⎥
⎥
⎥
⎥
⎤

 

 
Let T be the Transfer Function of the plant G. Therefore, 
T = 
From input 1 to the output are in (23) and (24). 

 
4: =.=44AB	C$	$	%.DEF%&'	C&	$	E.64EF%(	G

C)	$	%.BBHF%'(	C$	I	%.=6EF%*	C&	$	E.D4DF%&*G	I	%.EJDF%')
 (23) 

 
6: $=.===%%=A	C&

C)	$	%.BBHF%'(C$	I	%.=6EF%*	C&	$	E.D4DF%&*	G	I	%.EJDF%')
 (24) 

  
From input 2 to output are in (25). 

 
5: =.=4E4B	G
	C&$	%.=DEF%'(G	$	6.DB4F%+

     (25) 
 

From input 3 to output are in (26) and (27). 
 

4: =.===%=AAC&

G)	$	%.BBHF%'(C$I	%.=6EF%*C&$	E.D4DF%&*	G	I	%.EJDF%')
 (26) 

6: =.=4E6HC$	$	4.J%EF%&'	C&$	E.=HF%(	G
	C)$	%.BBHF%'(C$	I	%.=6EF%*C&$	E.D4DF%&*	G	I	%.EJDF%')

 (27) 
 

As shown above, the transfer function shows that the 
system is a MIMO system. 

In other to determine the stability of the system, the 
stability analysis is performed below. 

The state variables are (28)-(30). 
 

𝑅𝑜𝑙𝑙	(𝑥1𝑑) 	= 	 [1; 	0; 	0; 	0; 	0; 	0]; 	𝐶𝑥1	 = 	 [0	0	0	1	0	0];  (28) 
 
𝑃𝑖𝑡𝑐ℎ	(𝑥2𝑑) 	= 	 [0; 	1; 	0; 	0; 	0; 	0]; 	𝐶𝑥2	 = 	 [0	0	0	0	1	0];  (29) 
 
𝑌𝑎𝑤	(𝑥3𝑑) 	= 	 [0; 	0; 	1; 	0; 	0; 	0]; 	𝐶𝑥3	 = 	 [0	0	0	0	0	1];  (30) 
 

By further analysis, the Roll, Pitch and Yaw of the equation 
are below in (31)-(33). 

 
 =.=44AB	C$	$	%.DEF%&'	C&	$	E.64EF%(	G
C)	$	%.BBHF%'(	C$	I	%.=6EF%*	C&	$	E.D4DF%&*G	I	%.EJDF%')

 (31) 
 

=.=4E4B	G
	C&$	%.=DEF%'(G	$	6.DB4F%+

    (32) 
 

=.=4E6HC$	$	4.J%EF%&'	C&$	E.=HF%(	G
	C)$	%.BBHF%'(C$	I	%.=6EF%*C&$	E.D4DF%&*	G	I	%.EJDF%')

 (33) 
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E. PID Controller 
Proportional-Integral-Derivative (PID) controller action is 

a combination of proportional, integral, and derivative 
actions. To achieve optimal response, the three basic 
coefficients are varied in each PID controller for each 
implementation. 

The satellite system to be controlled is a MIMO (Multiple 
Input Multiple Output systems) while the PID controller or 
any other linear controller are best used for SISO system 
(Single Input Single Output systems), therefore to apply the 
PID controller to the system each of the axes of rotation is 
tuned separately and the graphs were later combined. The 
PID operation was implemented using Simulink and the 
response of each roll, pitch and yaw was combined and 
recorded. The figure shows the PID controller 
implementation on Simulink. 

F. Linear Quadratic Regulator (LQR) Design 
LQR is an advanced control technique that is used to 

design linear controllers for complex systems with stringent 
performance requirements. Since accuracy is critical for 
military application especially when it involves collateral 
damage. Therefore a specific design parameter was set for the 
controller to determine the performance. For LQR design, the 
following performance indices are considered, 

i. The settling time is to be ≤ 10 seconds, 
ii. Power consumption ≤ 0.3 Watts and 
iii. Zero (0) steady-state error / final value. 
The main idea behind the control system is to find a cost 

function and minimize it. After determining that the cost 
function is minimized, later feedback into the system using a 
gain-matrix K. as stated in [18]-[20]. Fig. 3 shows the Matlab 
algorithm implementation of the LQR for the satellite attitude 
stabilizations while Fig. 2 shows the control block of the LQR 
controller. 

 

 
Fig. 3. Simulink block of PID controller. 

 

 

 
Fig. 4. Simulink design of 31-33. 

 

 
Fig. 5. Block diagram of Linear Quadratic Regulator. 
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𝑢(𝑡) = 𝑘𝑥(𝑡)     (34) 
 

The feedback gain matrix is denoted by k. To find the 
control signal 'u', the cost function must minimize, which is 
defined as the performance index (PI), given in (35) and (36). 
 

𝐽(𝑥, 𝑢) = %
6∫ (𝑥#𝑄𝑥 + 𝑢#K

= 𝑅𝑢)𝑑𝑡   (35) 
 

𝐽 = %
6∫ 𝑥2(𝑄 + 𝐾2𝑅𝐾)𝑑𝑡	K

=    (36) 
 

The feedback gain matrix K has the structure shown in 
(38). 
 
𝐾 = 𝑅$%𝐵$%𝑃     (37) 

P is the algebraic Riccati equation solution given in (38). 
 
𝐴2𝑃 + 𝑃𝐴 + 𝑄 − 𝑃𝐵𝑅$%𝐵2𝑃 = 0   (38) 
 
where 𝑄≥0, 𝑅>0, 𝑃≥0 are symmetric, positive definite, and 
semi-positive matrices respectively defined as state and 
control weighting matrices. 

 
𝑄 = 𝑑𝑖𝑎𝑔[𝑄%, 𝑄6, 𝑄4,…………………….𝑄.C]  (39) 
 
𝑅 = 𝑑𝑖𝑎𝑔[𝑅%, 𝑅6,𝑅4………………………𝑅.7]  (40) 

 
where 𝑛Cdenotes the number of states and n a denotes the 
number of actuators [22]. 

The primary goal of the LQR Controller design is to 
minimize the quadratic cost function 𝐽 = %

6∫ 𝑥2(𝑄 +K
=

𝐾2𝑅𝐾)𝑑𝑡	. The cost function does have a distinctive 
minimum that can be derived by finding the solutions to the 
Algebraic Riccati Equation, irrespective of the Q and R 
values. To penalize the state variables and control signals, the 
variables Q and R can be utilized as design parameters. The 
higher these values, the greater these signals are penalized. 
Selecting a bigger value for R means that you are attempting 
to stabilize the system with little (weighted) energy 
(expensive or costly control strategy). 
 

 

 
Fig. 6. LQR algorithm of the satellite attitude stabilization. 

 

Set up the Control goals 

Are Design 
specifications 

Achieved? 

Pin down the Variables to be Controlled 

Define Control Design Specifications/ 
Performance Index 

Set up the system configuration 

Get a model of the Process, the actuator and 
the satellite. 

Set out a Controller and select key parameters 
to be adjusted 

Optimize the parameters and analyze their 
Performance 

If the performance meets the specifications, 
then finalize the design 

NO

3-axis attitude to zero degrees 

𝜙,𝜃 & 𝜑 Angles 

Design specification
Settling time ≤ 10 seconds 
Power consumption ≤ 0.3W
Zero steady-state error/ final 
value

Weighting Matrices, Q and R 
adjustmen 

YES
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Fig. 7. PID controller output. 

 
Selecting a small value for R, on the contrary, indicates that 

we do not want to penalize the control signal (cheap control 
strategy). In a similar fashion, a high value for Q indicates 
that we are attempting to stabilize the system with as few 
adjustments in the states as possible, and a high-value Q 
indicates that we are less concerned about the shifts in the 
states. Given the trade-off, we kept Q as I (identity matrix) 
and only adjust R. You can use a large R if the control output 
signal has a limit (for example, if high control signals 
introduce sensor noise or cause actuator saturation), and a 
small R if having a large control signal is not a problem for 
your system. Since the reaction wheel has a fundamental 
problem of saturation, then logical to have a large signal R to 
minimize the cost function and avoid saturation. 

The Q and R matrices are chosen by adjusting them in the 
developed MATLAB code until the desired performance is 
obtained. The feedback gain matrix; K, is computed in 
MATLAB using the syntax command in (41); 

 
[𝐾, 𝑃, 𝐸] = 𝑙𝑞𝑟(𝐴, 𝐵, 𝑄, 𝑅)    (41) 
 

IV. COMPUTER SIMULATION 

A. System Analysis 
To apply a controller or any control method to a system, it 

is important to know the system's characteristics. Some of the 
few important characteristics are: 

B. Controllability and Observability 
A dynamic system is considered to be controllable if it can 

be driven to any state in a finite number of times using control 
signals. If the controllability matrix generated by ctrb 
(CO=ctrb (A, B); has full rank, that is, the rank is equivalent 
to the number of states in the state-space model, the system is 
controllable. 

The command line on Matlab  
Co = ctrb(A,B); 
unco = length(A) - rank(Co) 
The code returns an output of unco=0; this means that the 

system is controllable and it has no uncontrollable state. If the 
observability matrix produced by Ob = obsv(A, C); has full 
rank, that is, the rank is equivalent to the number of states in 
the state-space model, the system is said to be observable. 

Ob = obsv(A,C); 
unobsv = length(A) - rank(Ob) 
The code returns an output of unobsv=0; this means that 

the system is observable and it has no unobservable state. 

C. System Analysis before the Controller 
sys = ss(A,B,C,D); 
B = isstable(sys) 
The code returns an output of B=0; B is equal to logic 0, 

which means that the system is not stable. Also for the pole 
of the system, it shows that the system is not stable. 

The pole of Roll is (0.0000	 + 	0.0032𝑖	, 0.0000	 −
	0.0032𝑖, 0.0000	 + 	0.0000𝑖, 0.0000	 − 	0.0000𝑖) which 
means the roll is not stable. 

The pole of pitch is (5.341𝑒 − 4	, −5.341𝑒 − 4) which 
means the pitch is not stable… 

The pole of yaw is (0.0000	 + 	0.0032𝑖	, 0.0000	 −
	0.0032𝑖, 0.0000	 + 	0.0000𝑖, 0.0000	 − 	0.0000𝑖)	which 
means the yaw is not stable. 

Since the system is controllable and observable, then we 
can proceed to apply the controller to the system. 

D. PID Controller Result 
The result of the PID controller is shown in Fig. 7. 

E. LQR Controller Result 
Control Parameters with their resulting time responses; 

Keeping Q1 constant at Q1 = diag([1, 1, 1, 1,1, 1]); while 
varying R-matrix . 

For Q1 = diag([1, 1, 1, 1,1, 1]) and R1a = 0.1 *diag([1, 
1,1]) 
 

 
Fig. 8. GUI of constant Q1 and R1a = 0.1 *diag([1, 1,1]). 
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Fig. 9. Step response of constant Q1 and R1a = 0.1 *diag([1, 1,1]). 

 

 
Fig. 10. GUI of constant Q1 and R1b = 0.1 *diag([5, 5,5]). 

 

 
Fig. 11. Step response of constant Q1 and R1b = 0.1 *diag([5, 5,5]). 

 
Fig. 12. GUI of constant Q1 and R1b = 0.1 *diag([10, 10,10]). 

 

 
Fig. 13. Step response of constant Q1 and R1b = 0.1 *diag([10, 10,10]). 

 
Time Responses; Keeping R constant at R = 0.1*diag([1, 

1, 1]) while varying Q-matrix. 
Constant R1 at Q2 = diag([2, 2, 2, 2, 2, 2]) 

 

 
Fig. 14. GUI of Q2 = diag([2, 2, 2, 2, 2, 2]); at constant R1. 
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Fig. 15. Step response of Q2 = diag([2, 2, 2, 2, 2, 2]) at constant R1. 

  

 
Fig. 16. GUI of Q2 = diag([4, 4, 4, 4, 4, 4]) at constant R1. 

 

 
Fig. 17. step response of Q2 = diag([4, 4, 4, 4, 4, 4]) at constant R1. 

 

 
Fig. 18. GUI of Q4 = diag([6, 6, 6, 6, 6, 6]); at constant R1. 

 

 
Fig. 19. step response of Q4 = diag([6, 6, 6, 6, 6, 6]) at constant R1. 

 

 
Fig. 20. GUI of Q5 = diag([8, 8, 8, 8, 8, 8]) at constant R1. 

 
TABLE IV: SUMMARY OF THE LQR RESULT WHEN Q IS CONSTANT AND R IS VARIED 

Control Parameters (Q and R) States/Euler 
Angles 

SettlingTime 
(Sec) 

Steady- State 
Error/Final value 

Peak Amplitude 
(Rads/ sec) 

Time To Stability/Zero 
Angular Error (sec) 

Constant Q1 and R1a = 0.1 *diag([1, 
1,1]); 

Roll, 𝜙 23.1 0 0.147 >30 
Pitch, 𝜃 11.7 0 0.249 
Yaw, 𝜓 5.64 0 0.107 

Constant Q1 and R1b =diag([5, 5,5]) Roll, 𝜙 45.1 0 0.049 >30 
Pitch, 𝜃 18.3 0 0.17 
Yaw, 𝜓 10.6 0 0.0991 

Constant Q1 and R1c =diag([10, 10,10]) Roll, 𝜙 >50 0 0.0592 >30 
Pitch, 𝜃 21.8 0 0.0596 
Yaw, 𝜓 12.2 0 0.0595 
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Fig. 21. step response of Q5 = diag([8, 8, 8, 8, 8, 8]) at constant R1. 

 

 
Fig. 22. GUI of Q6 = diag([8.5, 8.5, 8.5, 8.5, 8.5, 8.5]) at constant R1. 

TABLE V: SUMMARY OF THE LQR RESULT WHEN Q VARIED AND R CONSTANT 
Control Parameters 

(Q 
and R) 

States/Euler 
Angles 

Settling 
Time (Sec) 

Steady- State 
Error/Final 

value 

Peak Amplitude 
(Rads/ sec) 

Time To 
Stability/Zero 
Angular Error 

(sec) 
Q2 = diag([2,2, 2, 

2, 2,2]); 
at constant R1 

Roll, 𝜙 17.4 0 0.291 23.9 
Pitch, 𝜃 6.95 0 0.229 
Yaw, 𝜓 5.39 0 0.147 

Q3= diag([4,4, 4, 
4, 4, 4]) 

at constant R1 

Roll, 𝜙 13.2 0 0.198 17.4 
Pitch, 𝜃 6.12 0 0.338 
Yaw, 𝜓 5.40 0 0.284 

Q4= diag([6,6, 6, 
6, 6, 6]) 

at constant R1 

Roll, 𝜙 11.4 0 0.234 14.6 
Pitch, 𝜃 5.74 0 0.368 
Yaw, 𝜓 5.51 0 0.319 

Q5= diag([8,8, 8, 
8, 8, 8]) 

at constant R1 

Roll, 𝜙 10.2 0 0.261 13.0 
Pitch, 𝜃 5.52 0 0.391 
Yaw, 𝜓 5.52 0 0.345 

Q6= 
diag([8.5,8.5, 8.5, 

8.5, 8.5, 8.5]) 
at constant R1 

Roll, 𝜙 10.0 0 0.267 12.7 
Pitch, 𝜃 5.52 0 0.395 
Yaw, 𝜓 5.52 0 0.350 

 
Fig. 23. Step response of Q6 = diag([8.5, 8.5, 8.5, 8.5, 8.5, 8.5]) 

at constant R1. 
 
The PID controller result shows that the controller tries to 

stabilize the system but even at 100 sec, only the roll 
stabilized while the pitch is in a continuous oscillation and the 
Yaw is not even close to stabilizing at 500 sec. This is one of 
the limitations of using only a PID controller for a dynamic 
system or MIMO system.  

It can be observed from the result of Fig. 8-Fig. 13, as Q1 
is kept constant and increases R, the angular error did not hit 
the zero mark even at the set time of 30sec. This implies that 
the system will not achieve a steady state error and hence will 

not achieve stability within the time frame. Also considering 
the result of Fig. 14-Fig. 23, it can be observed that when R1 
is kept constant and Q is varied the time taken for the system 
to get to achieve zero angular error progressively reduced. 
The strategy of increasing Q whilst R is constant is called a 
cheap control strategy. Having a large R (expensive control) 
may be logical since the reaction will have the problem of 
saturation, but from our observation, it won't achieve our 
performance metric. It will be worth noting that the control 
output signal has a limit (for example, if high control signals 
introduce sensor noise or cause actuator saturation), and a 
small R if having a large control signal is not a problem for 
the satellite system. Since the reaction wheel has a 
fundamental problem of saturation, then it is only logical to 
have a small signal R to minimize the cost function and avoid 
saturation and therefore carefully choose the optimized Q to 
meet the system requirement (see Table IV and Table V). At 
Q6 =[8.5 8.5 8.5 8.5 8.5 8.5] and R1 =0.1* diag([1, 1, 1]); the 
system achieved a settling time of exactly 10sec, achieved a 
zero steady-state error and hit the zero angular error at exactly 
12.7. because increasing Q increases the control signal, it is 
only logical to check the power dissipated to achieve this 
performance metric to further influence our control decision. 

Q6 has the following system performance: roll (peak 
amplitude =0.26s, settling time=10.0s), Pitch (peak amplitude 
=0.395 s, settling time=5.52 s), Yaw (peak amplitude =0.350 
s, settling time=5.52 s) 
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Fig. 24a shows the maximum torque experienced by the 
satellite. From (9). The display shows all the torque 
experienced by the satellite from various inputs. Therefore to 
calculate the maximum possible power for the on-orbit 
attitude control and stabilization, we choose input 1: output 
4. (see Fig. 24a and 24b). 

 𝑇𝑜𝑟𝑞𝑢𝑒	1(𝑟𝑜𝑙𝑙) = 1.48𝑁𝑚,  
𝑇𝑜𝑟𝑞𝑢𝑒	2(𝑃𝑖𝑡𝑐ℎ	) = 	3.22𝑁𝑚,  
𝑇𝑜𝑟𝑞𝑢𝑒	3	(𝑦𝑎𝑤) = 2.51𝑁𝑚.  
Therefore, the maximum power; 

𝑃𝑜𝑤𝑒𝑟	 = 	𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝑇𝑜𝑟𝑞 ∗ 𝐴𝑛𝑔𝑢𝑙𝑎𝑟	𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦	(𝑊𝑎𝑡𝑡𝑠)		
𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝑃𝑜𝑤𝑒𝑟 = 	3.22 ∗ 0.391 = 1.26𝑤𝑎𝑡𝑡𝑠. 

The optimal gain matrix, from (41) will return the output 
(42). 

 
[𝐾, 𝑃, 𝐸] = 𝑙𝑞𝑟(𝐴, 𝐵, 𝑄6, 𝑅1)    (42) 
 
K = 
 8.1839 0.0000 -4.2454 21.4358 -0.0000 -7.1901 
 -0.0000 9.2195 -0.0000 -0.0000 16.2487 0.0000 
 4.2454 -0.0000 8.1839 -7.2606 0.0000 13.8587 
P = 

 22.2588 0.0000 -0.0094 8.0235 -0.0000 4.1217 
 0.0000 14.9806 -0.0000 0.0000 8.9510 -0.0000 
 -0.0094 -0.0000 14.3988 -4.1622 -0.0000 7.9456 
 8.0235 0.0000 -4.1622 21.0155 -0.0000 -7.0491 
 -0.0000 8.9510 -0.0000 -0.0000 15.7754 -0.0000 
 4.1217 -0.0000 7.9456 -7.0491 -0.0000 13.4550 
E = 
 -0.4742 + 0.0000i 
 -0.8368 + 0.4994i 
 -0.8368 - 0.4994i 
 -0.8601 + 0.0000i 
 -1.1398 + 0.9436i 
 -1.1398 - 0.9436i 

Finally, recall that before any of the controllers were 
applied to the system, it was established that the satellite 
system is not stable. Therefore to establish that the system is 
now stable we generate a Nyquist plot of the system. Fig. 25, 
Fig. 26, and Fig. 27 show the Nyquist plot of the roll, pitch 
and yaw respectively. From the plot, it is shown that the pole 
of the system is all now in the left half of the plane which 
implies that the system is now very stable. 

 

 
(a) 

 
(b) 

Fig. 24. a) Maximum Torque on the satellite body; b) All the Torque experiences on the satellite body. 
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Fig. 25. The Nyquist plot of the Pitch. 

 

 
Fig. 26. The Nyquist plot of the Yaw. 

 

 
Fig. 27. The Nyquist plot of the Roll. 
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V. CONCLUSION 
The PID controller's output established the reason why 

aerospace engines design filters and different gain amplifiers 
to aid the PID controller's adaptability for space missions. 
Although the PID controller is still widely used because it is 
simple to design, the PID control system is becoming more 
complex as every limitation of the controller requires an 
additional circuit to compensate, and as more fixtures, 
flexibility, and adaptability are required for satellite design, 
therefore aerospace engineers will have to seek alternates to 
reduce design complexity, power demand, and the cost of 
designing filters to meet every design requirements of PID 
controller. When optimized, the LQR controller is a perfect 
advanced controller for any satellite application and industrial 
control design. Because of saturation, combining LQR and 
reaction wheel actuator may necessitate caution. To avoid 
actuator saturation, margnetorquer can be added to each axis 
of the reaction wheel. 
 

REFERENCES 
[1] Xie Y, Huang H, Hu Y, Zhang G. Applications of advanced control 

methods in spacecraft: progress, challenges, and future prospects. 
Front. Inf. Technol. Electron. Eng., 2016; 17(9): 841–861. doi: 
10.1631/FITEE.1601063. 

[2] Marlin CL. Space Race Propaganda: U.S. Coverage of the Soviet 
Sputniks in 1957. Journal. Q., 1987; 64(2–3): 544–559. doi: 
10.1177/107769908706400237. 

[3] Kou J, Zhang W. Data-driven modeling for unsteady aerodynamics and 
aeroelasticity. Prog. Aerosp. Sci., 2021; 125: 100725. doi: 
10.1016/j.paerosci.2021.100725. 

[4] Maini AK, Agrawa V. Satellite Technology: Principles and 
Applications. John Wiley & Sons; 2011. 

[5] Daneshjou K, Mohammadi-Dehabadi AA, Bakhtiari M. Mission 
planning for on-orbit servicing through multiple servicing satellites: A 
new approach. Adv. Space Res., 2017; 60(6): 1148–1162. doi: 
10.1016/j.asr.2017.05.037. 

[6] Gaga A, Diouri O, Ouazzani Jamil M. Design and realization of nano 
satellite cube for high precision atmosphere measurement. Results 
Eng., 2022; 14: 100406. doi: 10.1016/j.rineng.2022.100406. 

[7] Zanchettin AM, Calloni A, Lovera M. Robust Magnetic Attitude 
Control of Satellites. IEEEASME Trans. Mechatron., 2013; 18(4): 
1259–1268. doi: 10.1109/TMECH.2013.2259843. 

[8] Avanzini G, de Angelis EL, Giulietti F, Serrano N. Attitude control of 
Low Earth Orbit satellites by reaction wheels and magnetic torquers. 
Acta Astronaut., 2019; 160: 625–634. doi: 
10.1016/j.actaastro.2019.03.013. 

[9] Evain H, Alazard D, Rognant M, Solatges T, Brunet A, Mignot J, 
Rodriguez N, et al. Satellite Attitude Control with a six-Control 
Moment Gyro Cluster tested under Microgravity Conditions. presented 
at the International Symposium on Space Flight Dynamics 2019 
(ISSFD), Feb. 2019, p. 1387. Accessed: Feb. 19, 2023. [Online]. 
Available: https://hal.science/hal-02166772. 

[10] Doupe C, Swenson ED. Optimal Attitude Control of Agile Spacecraft 
Using Combined Reaction Wheel and Control Moment Gyroscope 
Arrays, in AIAA Modeling and Simulation Technologies Conference, 
American Institute of Aeronautics and Astronautics. doi: 
10.2514/6.2016-0675. 

[11] Xiao B, Yin S. A Deep Learning Based Data-Driven Thruster Fault 
Diagnosis Approach for Satellite Attitude Control System. IEEE Trans. 
Ind. Electron., 2021; 68(10): 10162–10170. doi: 
10.1109/TIE.2020.3026272. 

[12] Pasand M, Hassani A, Ghorbani M. A study of spacecraft reaction 
thruster configurations for attitude control system. IEEE Aerosp. 
Electron. Syst. Mag., 2017; 32(7): 22–39. doi: 
10.1109/MAES.2017.160104. 

[13] Narkiewicz J, Sochacki M, Zakrzewski B. Generic Model of a Satellite 
Attitude Control System. Int. J. Aerosp. Eng., 2020; 2020: 1–17. doi: 
10.1155/2020/5352019. 

[14] Karata S. A Thesis Submitted To The Graduate School Of Natural And 
Applied Sciences of Middle East Technical University, 2016. 

[15] Auret J. Design of an aerodynamic attitude control system for a 
CubeSat. [Thesis]. Stellenbosch : Stellenbosch University, 2012. 
Accessed: Feb. 19, 2023. [Online]. Available: 
https://scholar.sun.ac.za:443/handle/10019.1/19956. 

[16] Sidi MJ. Spacecraft Dynamics and Control: A Practical Engineering 
Approach. Cambridge University Press, 1997. 

[17] Wertz JR. Spacecraft Attitude Determination and Control. Springer 
Science & Business Media, 2012. 

[18] Ouhocine C, Filipski MN, Noor SBM, Ajir MR, Hamzah N. Small 
Satellite Attitude Control and Simulation. Faculty of Engineering 
Universiti Putra Malaysia. Jurnal Mekanikal, Jun 2004; 17: 36-47. 

[19] Esmaelzadeh Aval R. Lectures on Spacecraft Dynamics & Control 
20220620 (In Persian). 2022. 

[20] Relvas M, Lourenço P, Batista P. Nonlinear MPC for Attitude 
Guidance & Control of Autonomous Spacecraft. In (L. Brito Palma, R. 
Neves-Silva, and L. Gomes, Eds.), Lecture Notes in Electrical 
Engineering. Cham: Springer International Publishing, 2022, pp. 15–
25. doi: 10.1007/978-3-031-10047-5_2. 

[21] Eze CU, Mbaocha CC, Onojo JO. Design of Linear Quadratic 
Regulator for the Three-Axis Attitude Control System Stabilization of 
Microsatellites. 2016; 7(6). 

[22] Wisniewski R. Linear Time-Varying Approach to Satellite Attitude 
Control Using Only Electromagnetic Actuation. J. Guid. Control Dyn., 
2000; 23(4): 640–647. doi: 10.2514/2.4609. 

 


