##plugins.themes.bootstrap3.article.main##

In this study; theory, design and modeling of a new topology of ultra-wideband (UWB) metamaterial (MTM) loaded microstrip array antenna using Fibonacci & fractal geometric patterns are analyzed. This antenna is made basically from many monopole elements which are loaded by complementary metamaterial transmission line (CMTL) unit cells. The distributed CMTL element, contains a Koch-shaped expanded complementary single split ring resonator (CSRR) pair. At first step, the UWB microstrip array antenna designed with two CMTL-loaded monopole element. So, using an iterative method based on the Fibonacci and fractal geometry patterns, the array antenna is expanded. As the order of iteration increases, the impedance bandwidth of the proposed array antennas improve more, and the radar cross section (RCS) decreases. the impedance bandwidth of the proposed third-order Fibonacci and fractal CMTL-loaded array antennas are 250 MHz and 539 MHz more than the two-element CMTL-loaded array antenna, respectively. Finally, this paper presents an improved method to extract the parameters of an equivalent circuit model of the proposed MTM-loaded array antenna. Verification of the equivalent model have been validated utilizing ADS software. The obtained model, in addition to numerically efficient in comparison with the full wave analysis utilizing the moment method, gives a good physical insight to the mutual coupling mechanism of the array antenna.

Downloads

Download data is not yet available.

References

  1. R. Kumar Saraswat, and M. Kumar, ?Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications,? Progress in Electromagnetics Research B, vol. 65, pp. 65-80, 2016.
     Google Scholar
  2. Z. Mansouri, A. S. Arezomand, S. Heydari, and F. B. Zarrabi, ?Dual notch UWB Fork monopole antenna with CRLH metamaterial load,? Progress in Electromagnetics Research, Vol. 65, pp. 111-119, 2016.
     Google Scholar
  3. M. A. W. Nordin, M. T. Islam, and N. Misran, ?Design of a compact ultrawideband metamaterial antenna based on the modified split-ring resonator and capacitively loaded strips unit cell,? Progress in Electromagnetics Research, Vol. 136, pp. 157-173, 2013.
     Google Scholar
  4. E. Hanae, N. A. Touhami, and M. Aghoutane, ?Miniaturized microstrip patch antenna with spiral defected microstrip structure,? Progress In Electromagnetics Research Letters, Vol. 53, pp. 37?44, 2015.
     Google Scholar
  5. M. Rahimi, F. B. Zarrabi, R. Ahmadian, Z. Mansouri, and A. Keshtkar, ?Miniaturization of antenna for wireless application with di?erence metamaterial structures,? Progress In Electromagnetics Research, Vol. 145, pp. 19?29, 2014.
     Google Scholar
  6. R.K. Saraswat, and M. Kumar, ?A frequency band recon?gurable UWB antenna for high gain applications,? Progress In Electromagnetics Research B, Vol. 64, pp. 29?45, 2015.
     Google Scholar
  7. H. X. Xu, G. M. Wang, Y. Y. Lv, M. Q. Qi, X. Gao, and S. Ge, ?Multifrequency monopole antennas by loading metamaterian transmission lines with dual-shunt branch circuit,? Progress In Electromagnetics Research, Vol. 137, pp. 703-725, 2013.
     Google Scholar
  8. S. Nelaturi, N. V. S. N. Sarma, ?A Compact Microstrip Patch Antenna Based on Metamaterials for Wi-Fi and WiMAX Applications,? Journal of Electromagnetic Engineering and Science, vol. 18, no. 3, pp. 182-187, 2018.
     Google Scholar
  9. S. N. Boyko, A. S. Kukharenko, and Y. S. Yaskin, ?EBG Metamaterial Ground Plane for Mitigation of Multipath Signals in GNSS Antenna,? Journal of Electromagnetic Engineering and Science, vol. 15, no. 4, pp. 199-205, 2015.
     Google Scholar
  10. R. Datta, T. Shaw, and D. Mitra, ?Miniaturization of microstrip Yagi array antenna using metamaterial,? Progress in Electromagnetics Research, Vol.72, pp. 151-158, 2017.
     Google Scholar
  11. X. W. Dai, Z. Y. Wong, L. Li, and C. H. Liong, ?Multi-band rectangular microstrip Antenna using a metamaterial-inspired technique,? Progress in Electromagnetics Research Letters, Vol.41, pp. 87-95, 2013.
     Google Scholar
  12. H. H. Yang, X. Y. CAO, Q. R. Zheng, J. J. MA, and W. Q. Li, ?Broadband RCS reduction of microstrip patch antenna using bandstop frequency selective surface,? Radioengineering, Vol.22, NO.4, pp.1275-1280, 2013.
     Google Scholar
  13. H. X. Xu, G. M. Wang, M. Q. Qi, C. X. Zhang, J. G. Liang, J. Q. Gong, and Y. C. Zhou, "Analysis and design of two-dimensional resonant-type composite right/left-handed transmission lines with compact gain-enhanced resonant antennas," IEEE Transactions on Antennas and Propagation, vol. 61, no. 2, pp. 735-747, 2013.
     Google Scholar
  14. B. Ozbakis, and A. Kustepeli, ?The resonant behavior of the Fibonacci fractal tree antennas,? Microwave and optical technology letters, Vol. 50, no.4, pp. 1046-1050, 2008.
     Google Scholar
  15. S. Khobragade, S. Nalbalwar, and A. Nandgaonkar, ?Study of fractal tree antenna for multiband applications,? in Proceedings of the International Conference on Communication and Signal Processing (ICCASP), Lonere, India, 2016, pp. 522-529.
     Google Scholar
  16. S. Shrestha, S. R. Lee, and D. Y. Choi, ?A new fractal-based miniaturized dual band patch antenna for RF energy harvesting,? International Journal of Antennas and Propagation, Vol. 2014, article no. 805052, 2014.
     Google Scholar
  17. R. kubacki, S. Lamari, M. Czyzewski, and D. Laskowski, ?A broadband left-handed metamaterial microstrip antenna with double-fractal layers,? International Journal of Antennas and Propagation, vol. 2017, article no. 6145865, 2017.
     Google Scholar
  18. C. Sharma and D. K. Vishwakarma, "Miniaturization of Spiral Antenna Based on Fibonacci Sequence Using Modified Koch Curve," in IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 932-935, 2017
     Google Scholar
  19. K. H. Sayidmarie, and L. S. Yahya, ?Modeling of Dual-Band Crescent-Shape Monopole Antenna for WLAN Applications,? International Journal of Electromagnetics and Applications, 2014.
     Google Scholar
  20. A. Ferchichi, N. Fadlallah, and A. Gharssallah, ?A novel electrical model to an antenna array,? Journal of Engineering and Technology Research, Vol. 3, no. 12, pp. 321-329, 2011.
     Google Scholar
  21. A. B. Numan, and M. S. Sharawi, ?Extraction of Material Parameters for Metamaterials Using a Full-Wave Simulator,? IEEE Antennas and Propagation Magazine, Vol. 55, no. 5, pp. 202-211, 2013.
     Google Scholar
  22. E. O. Ezenwa, M.C. Maya-Sanchez, and J. A. R. Hernandez, ?Improved method for extracting the equivalent circuit elements of a CRLH-TL unit cell,? Revista Mexicana de Fisica, 2015.
     Google Scholar
  23. B. R. Shookooh, A. Monajati, and H. Khodabakhshi, ?The novel design and modeling of Ultra-Wideband metamaterial-loaded microstrip array antenna using the fractal & Fibonacci geometric patterns,? Journal of Electromagnetic Engineering and Science, vol. 20, no. 1, pp. 53~63, 2020.
     Google Scholar